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Abstract—In this paper, a new capacitance extraction method
called the dimension-reduction technique (DRT) is presented
for three-dimensional (3-D) very large-scale integration (VLSI)
interconnects. The DRT converts a complex 3-D problem into a
series of cascading simple two-dimensional (2-D) problems. Each
2-D problem is solved separately, thus we can choose the most
efficient method according to the arrangement of conductors.
We have used the DRT to extract the capacitance matrix of
multilayered and multiconductor crossovers, bends, vias with
signal lines, and open-end. The results are in close agreement with
those of Ansoft’s SPICELINK and the Massachusetts Institute of
Technolgy’s (MIT) FastCap, but the computing time and memory
size used by the DRT are several (even ten) times less than those
used by SPICELINK and FastCap.

Index Terms— Capacitance extraction, dimension-reduction
technique, interconnects, 3-D VLSI.

I. INTRODUCTION

W ITH the continuous increase in the clock rate of the
high-speed very large-scale integration (VLSI) system

and a decrease in the feature size of the interconnects and
packages of VLSI circuit chips, the resultant signal delay,
crosstalk, distortion and reflection may degrade the system
performance. Analysis of these negative effects has become as
important as the circuit design. This has increased the interest
in efficient methods for calculating electrical parameters of
the interconnects and packages.

Many numerical methods have been applied to extract
the electrical parameters of the interconnects and packages.
These methods can be generally classified into two categories:
integral-equation methods and differential-equation methods.
The differential-equation methods, such as the finite-element
method (FEM) [1], finite-difference method (FDM) [2], [4],
and measured equation of invariance (MEI) [3], [4], divide an
interconnect cell into meshes and lead to a large-scale sparse
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matrix equation. Though the compressed storage technique
and some efficient algorithms may be applied, the solving
process is still time consuming and requires huge memory. The
integral-equation methods, such as the method of moments
(MoM) [5], [6], and the boundary-element method (BEM)
[7], [8], divide the surfaces of conductors and the interfaces
of dielectric layers into meshes and lead to a comparatively
smaller, but full matrix. When the numbers of conductors and
dielectric layers increase, the analysis procedure will also be
too costly in terms of computing time and memory needs.

Until now, several commercial tools such as TMA’s Raphael
(based on the FDM), Ansoft’s SPICELINK (based on the
FEM) and the Massachusetts Institute of Technolgy’s (MIT)
FastCap (based on the multipole accelerated BEM) are avail-
able to calculate the capacitance matrix of various intercon-
nects. It is well known that most VLSI interconnects have
stratified structures and every layer is homogeneous along the
direction perpendicular to the interfaces of the layers (denoted
as -direction). However, it seems that the tools mentioned
above have neglected this fact. In this paper, we present a new
capacitance extraction method [called the dimension-reduction
technique (DRT)] to take full advantage of this fact. According
to the method of separation of variables, the three-dimensional
(3-D) Laplace equation defined in each layer can be reduced
to a two-dimensional (2-D) Helmholtz equation defined on the
cross section of the layer because the layer is homogeneous
along the -direction. Therefore, the original 3-D problem
is converted into a series of cascading 2-D problems. Each
2-D problem can be solved separately, thus we can choose
the most efficient method for each problem according to the
arrangement of the conductors. More importantly, it is very
easy to obtain the analytical solutions of 2-D problems in
many layers such as the pure dielectric layers and the layers
with parallel signal lines. Therefore, the domain that has to
be analyzed numerically is reduced to the least. This leads to
a dramatic reduction in computing time and memory needs.
This method has been used to extract the capacitance matrix
of multilayered and multiconductor crossovers, bends, via with
signal lines, and open-end. The results are in close agreement
with those of SPICELINK and FastCap, but the computing
time and memory size used by the DRT are several (even ten)
times less than those used by SPICELINK and FastCap.
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Fig. 1. An example of layout.
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(c) (d)

(e) (f)
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Fig. 2. Some typical interconnect structures. (a) Multiconductor crossover.
(b) Open-end. (c) Via with signal lines. (d) Bends. (e) Crossover with bend.
(f) Gap. (g) Multilayered multiconductor lines.

II. THE PRINCIPLE OF DRT

Up to now, the feature size of VLSI interconnects is far
small in comparison with the operation wavelength. There-
fore, the static assumption is valid. A simple example of
interconnect layout is shown in Fig. 1. To be mentioned
later, we assume that the whole interconnect system can be
decomposed into a lot of simple cells with magnetic walls and
analyzed individually, and these cells can be classified into a
limited number of typical structures, such as those shown in
Fig. 2.

We will use an example to validate the above decomposing
concept. A combined structure in Fig. 3 can be decomposed

Fig. 3. Crossover with open-end and its decomposition.

TABLE I
VALIDATION OF DECOMPOSINGCONCEPT (L1 = 6w). C1(1; 1) =

2.33� 10�3 pF, c1(1;2) = —0.298� 10�3 pF

L2 0:5w w 2w 3w 4w 5w
C0

(10�3 pF)
0.192 0.273 0.430 0.585 0.735 0.741

Cc(1; 1)
(10�3 pF)

1.94 1.80 1.47 1.16 0.835 0.453

Cc(1; 2)
(10�3 pF)

�0.305 �0.304 �0.300 �0.300 �0.281 �0.198

C2(1;1)
(10�3 pF)

2.324 2.333 2.330 2.330 2.305 1.935

error % 0.25 0.13 0.0 0.0 1.07 16.95
C2(1;2)

(10�3 pF)
�0.305 �0.304 �0.300 �0.300 �0.281 �0.198

error % 2.35 2.01 0.67 0.67 5.7 33.56

into five cells with magnetic walls; these cells are classified
as crossover and open-end. The width and thickness of each
conductor are equal and are denoted as, the length of every
conductor is , the thickness and relative dielectric constant
of every dielectric layer are and 3.9, respectively. First, we
compute the capacitance matrix by taking the whole structure
as one piece. The matrix is denoted as , and its elements
are shown in Table I. Next, we calculate the capacitance of
open-end and the capacitance matrix of crossover
separately. The capacitance matrix of the whole structure is
obtained by the following formula:

(1)

The elements of are shown in Table I, where stands
for the distance between the edge of the conductor and the end
of the open-end, and stands for the distance between the
magnetic wall and the end of the open-end, as shown in Fig. 3.
It is obvious that the error caused by the magnetic walls is less
than 5% when .

We will use a typical 3-D multilayer and multiconductor
interconnect structure, as shown in Fig. 4, to illustrate the
principle of the DRT. Along the interfaces of dielectric layers,
the whole structure is cut into slices, as shown in Fig. 4. In the
th slice, the potential function satisfies the 3-D Laplace
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Fig. 4. A 3-D interconnect and slices.

equation

(2)

From Fig. 4, it is obvious that each slice is homogeneous
along the -direction. It should be noted that every slice is
surrounded by magnetic walls. Thus, the boundary conditions
can be expressed as (3a)–(3d), shown at the bottom of this
page, where refers to the voltage on theth conductor,
and is the unit vector normal to the magnetic walls.
refers to the sides of theth conductor, refers to the
magnetic walls. The condition (3a) will be absent if the slice
is a pure dielectric layer. Denote as a linear
function of , , and , and let

(4)

If there exists such a function that function
satisfies

(5a)

(5b)

and Laplace equation (2), then from the method of separation
of variables, the general solution of is

(6)

where and satisfy the following equations,
respectively,

(7a)

(7b)

(8)

The solution of (7) is called mode functions. The general
solution of (8) is

(9)

where and are the undetermined coefficients. Substi-
tuting the mode functions, and (4), (6), and (9) into (3c) and
(3d), and making the inner product of each side of (3c) with
the mode functions, we can obtain a system of linear equations
about and by utilizing the orthogonal property of
mode functions. The potential functions in every slice and
then the capacitance matrix can be readily retrieved from the
solutions of these equations.

Therefore, the crux of the whole problem has become how to
efficiently solve Helmholtz equation (7). In the pure dielectric
layer, such as the first and fifth layer in Fig. 4, the mode
functions and eigenvalues have the analytical expressions as

(10a)

(10b)

where and are the truncated numbers of the
mode functions along the- and -directions, and and
are the distance between the magnetic walls along the-

(3a)

(3b)

(3c)

(3d)
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(a) (b) (c)

Fig. 5. Cross section of the typical layers of crossovers in Fig. 2(a). (a) Dielectric layer. (b)y-direction signal-line layer. (c)x-direction signal-line layer.

and -directions, respectively. For the slice with irregular
conductors (such as the fourth layer in Fig. 4), we will choose
suitable numerical methods, such as the FDM, to solve (7).
The discretized form of (7) can be reduced to the following
eigenvalue equation:

(11)

where is the eigenvalue, is the eigenvector
consisting of the potential value at each mesh node, and
is a sparse matrix resulted from the finite-difference (FD)
equations at each mesh node. This equation can be solved by
some standard subroutines, such as the Lanczos method. And
the general solution of potential functions can be expressed as
(3). The field matching process is almost the same as that of
analytical mode functions.

In summary, the DRT consists of the following four steps:

1) partitioning the complex interconnects into simple cells
with magnetic walls;

2) along the interfaces of the dielectric layers, cutting the
stratified structure of each cell into slices;

3) finding the function in (4), following
the well-known method of separation of the variables, re-
ducing the 3-D Laplace equation (2) into 2-D Helmholtz
equation (7) and solving the Helmhotz equation in the
cross section of every slice separately;

4) matching the potential of each slice at the interfaces and
solving the linear matrix equation about the unknown
coefficients.

The field-matching process is the same as that of the mode-
matching technique [9], so we will omit the details of this
step. The first and the second steps are fixed and can be easily
implemented for all kinds of structures, while the third and
fourth steps may need some more explanation. In Section III,
we will present further details about them.

III. T HE APPLICATION OF THE DRT

In this section, we will use the DRT to analyze several
typical interconnect structures, shown in Fig. 2. Since these
structures are surrounded by magnetic walls, we only need to
perform the second, third, and fourth steps cited in Section II.

A. Multiconductor Crossover in Multilayered Dielectric Media

The structure of the multiconductor crossover is shown in
Fig. 2(a). Based upon the DRT concept, the structure is cut

into slices. There are three kinds of slices:

1) pure dielectric layers;
2) layer with -direction signal lines;
3) layer with -direction signal lines.

Their cross sections are shown in Fig. 5, where and
are the number of the signal lines along- and -directions,
respectively. The function in (4) can be
easily obtained. For the layer with the-direction signal lines,
it is

(12)

where is the voltage on theth signal line, is the
distance betweenth and th line. For the layer with
-direction signal lines, takes the similar

form.
The mode functions and eigenvalues in every layer can then

be expressed analytically; for the pure dielectric layers, they
are (10), and for the layer with-direction signal lines, they are

(13a)

(13b)
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(a) (b) (c)

Fig. 6. Cross section of typical layers of the via with signal lines in Fig. 2(c). (a) Top signal line. (b) Bottom signal line. (c) Via.

(13c)

where and are the truncated numbers of the
mode functions along - and -directions in the domain ,
shown in Fig. 5(c), where is the sequence number of the
layer with -direction signal lines. Exchangingand , and
and , we can obtain the mode functions and eigenvalues in the
layer with the -direction signal lines. Substituting the mode
functions of every layer into (6) and matching the potential at
the interfaces, we can obtain the capacitance matrix.

The algorithm can be used to analyze crossover with an
arbitrary number of lines embedded in an arbitrary number of
dielectric layers. The crossover chosen for analysis is modeled
as: 1) the number of - and -direction lines are two; 2) the
width, thickness, and the length of each line are 1, 1, and 8m,
respectively; 3) the number of dielectric layers is five; 4) the
relative dielectric constant and thickness of each layer is 3.9
and m, respectively; and 5) the crossover is separated from
the top and bottom ground planes by 1m. The truncated
number of mode functions in every layer is 21 21. The
capacitance matrix is

pF

(14)

The computing time is 87 s with a SUN SPARC 20 work
station and the memory requirement is 2 Mb. We have used
Ansoft’s SPICELINK to calculate the same structure. The
calculated results are

pF

(15)

the central processing unit (CPU) time and memory needs are
881 s and 58.551 Mb, respectively.

B. Via with Signal Lines in Multilayered Dielectric Media

The structure of a via with signal lines is shown in Fig. 2(c).
The cross sections of three consecutive slices with conductor
are shown in Fig. 6.

For these three slices, the function in (4) is

(16)

so the DRT can be applicable to every slice of the whole
structure. Since the cross sections in Fig. 6 are irregular,
we can only obtain the discrete mode functions of these
slices by solving (7) numerically. The mode functions in pure
dielectric slices are the same as (10). Substituting all these
mode functions into (6) and taking the field-matching step, we
can obtain the capacitance. The algorithm can be used for the
rectangular via as well as the cases that the signal lines take
other shapes (such as a straight line with the pad on top of
the via).

We will use the via in Fig. 2(c) as the numerical example.
The whole structure can be cut into five slices and is symmetric
to the plane , shown in Fig. 6, so we only have to
analyze half of the structure. The top and bottom ground
planes are separated from the via by 1m. The length, width,
and thickness of the two signal lines are 6.4, 1.6, and 1m,
respectively. The radius and height of the via is 0.2 and 3m,
respectively. The distance between the center of the via and
the edge of the signal lines is 0.8m. The relative dielectric
constant of every layer is 2.5. The capacitance, computing
time, and memory size of the DRT and SPICELINK are shown
in Table II, where , , and refer to the truncated
number of mode functions in the slices with a top and bottom
signal line, the slice with the via, and the pure dielectric slices,
respectively.

Since the relative convergence problem is common in the
mode-matching method, we have performed a convergence
study to see if the DRT will encounter this problem. The curve
is shown in Fig. 7, where equals and the ratio of
to is taken as a variable. From Fig. 7, we can see that
the DRT suffers little from the relative convergence problem.
Also from Fig. 7, we can see that the result is accurate enough
when the mode number in every slice is around 50.
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TABLE II
THE CAPACITANCE OF VIA WITH THE SIGNAL LINES

M1 M2 M3
Capacitance
in 10�3 pF

CPU time
in seconds

Memory
size in Mb

40 40 49 1.416 85 0.961
50 50 49 1.447 86 0.961
60 60 49 1.430 93 0.961

SpiceLink 1.486 570 54.496

Fig. 7. Convergence study for the structure in Fig. 6.

Fig. 8. Side view of the multiconductor bends in Fig. 2(d).

C. Multiconductor Bends in Multilayered Dielectric Media

The multiconductor bends are shown in Fig. 2(d). Unfortu-
nately, for the slice with the conductors, the linear function

in (4) does not exist. Therefore, we have to
use numerical methods to discretize the Laplace equation (2)
in this slice. The side view of the bends with the FD mesh
nodes is shown in Fig. 8. The discretized equation (2) can be
written as

(17)

where vector and consists of the potential values at the
nodes on the top and bottom interfaces of the slice with bends,

consists of the potential values at the nodes between the
top and bottom interfaces, and refers to the voltage at the
nodes on the surfaces of the bends.

The general solutions in the pure dielectric slice are shown
in (6), where the mode functions are still (10). The field-
matching process for the bends is different from the standard
mode-matching technique. On the interface at (shown

in Fig. 8), the first equation in (3c) can be written as

on the th conductor

otherwise
(18)

where refers to the mesh number of the node on the
dielectric interface. Taking the inner product of both sides of
(18) with the mode functions in the pure dielectric slice, we
obtain

(19)

where refers to the position of the mesh node
and is the area surrounding the mesh node .
Equation (19) is a linear matrix equation about ,
and . To obtain unique solutions, we have to use the second
equation in (3c). However, the mode functions in the slice with
bends are unknown, and we cannot take the inner product of
both sides with these unknown mode functions. Therefore, we
will use the “point-matching technique” instead. The second
equation in (3c) is valid only on the discrete mesh nodes.
Replacing the differential along the-direction in the slice
with the bends with difference, the second equation in (3c) for
the node at the dielectric interface is expressed as

(20)

where and are the potential values at node 1 and 2,
shown in dashed-line circle of Fig. 8, and is the discretizing
step along the -direction. Combining (19) and (20), we can
obtain a matrix equation about , , and , .
Similarly, for the interface , we can obtain a matrix
equation about , , and , . Solving these two
matrix equations simultaneously, we can obtain the potential
in each slice, and the capacitance matrix can also be readily
retrieved.

The multiconductor bends to be analyzed here is modeled
as: 1) the number of bends is three; 2) the bends are supported
by a layer of dielectric substrate above the bottom ground
plane; 3) the thickness and relative dielectric constant of the
dielectric layer are 2 m and 3.9, respectively, and the bends
are separated from the top ground plane by a dielectric layer
whose thickness and relative dielectric constant are 2m and
2.45; 4) the thickness and width of the conductors are 1 and
1.5 m, respectively; 5) the distance between the conductor is
1.5 m; and 6) the distance between the magnetic walls along
the - and -directions are 27 m. Computed results are

pF (21)
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The computing time is 212 s with the SUN SPARC 20
workstation and memory requirement is 5.8 Mb. The number
of mode functions in the dielectric layers is 25 25. We
have used the software Ansoft MAXWELL SPICELINK to
calculate the same structure, and the computed results are

pF (22)

The computing time and memory used by SpiceLink are
1541 s and 60.9 Mb.

D. Other Structures

The implementation of the DRT for other structures is
straightforward. For instance, to analyze the structure shown
in Fig. 2(e), we can use a similar procedure to that used for
analyzing the structure in Fig. 2(d). In the layer with a straight
line, the mode functions have the similar analytical expressions
as (13a), while in the layer with the bend, the mode functions
can be obtained numerically. Therefore, combination of the
analysis process used for the structures in Fig. 2(a)–(d) can
be used to analyze the structure shown in Fig. 2(e)–(g) and
almost all kinds of other stratified structures.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we present a new method named the DRT to
extract the capacitance matrix of the 3-D interconnects in VLSI
circuits. The method has the following attractive features.

1) The computing time and memory needs are unrelated
to the ratio between the thickness of dielectric layers,
which means we need not make additional efforts for an
interconnect with both very thin and very thick layers.
However, it will be very costly to use the FDM and
FEM to extract the capacitance matrix of this kind of
interconnects.

2) Since the 2-D problems in some layers can be solved
analytically, the computing time and memory needs only
increase slightly when the sizes of conductors increase.
However, the computing time and memory used by the
BEM will increase greatly if the same thing happens.

3) The tedious task of a 3-D mesh generation is avoided,
since only a 2-D mesh generation is necessary if the 2-D
problems in some layers have to be solved numerically.

Based upon the basic idea of the DRT, we can set up an
accurate and fast field-solver library for the typical intercon-
nect structures. By using this library, accurate closed-form
formulas or database of the electrical parameter of these typical
interconnect structures can be easily obtained.

The most fundamental limitation in this approach is that the
method of separation of variables is applicable. This requires
that the interfaces of each layer are parallel to each other and
the surfaces of conductors are either parallel or perpendicular
to those interfaces. Unfortunately, some kinds of packages and
bonds do not meet these requirements. For these structures,
we could use the strategy in Section III-C, i.e., using the 3-D
FDM or FEM to analyze the slices containing those “irregular”
conductors. In fact, the core concept of the DRT is that every

slice is treated separately. Taking the DRT as an algorithm
framework, we can develop many hybrid algorithms.
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